Menu
    Nederlands

    Keep it cool: reducing energy peaks of reefers at terminals

    Publication of CoE HRTech

    J.H.R. Duin,van, H. Geerlings, M.A. Oey, A. Verbraeck | Conference contribution | Publication date: 11 November 2016
    The increase in population, high standards of living and rapid urbanization has led to an increasing demand for food across the globe. The global trade has made it possible to meet this demand by enabling transport of different food products from one part of the world to another. In this trade, refrigerated containers (reefers) play an important role, due to their ability to maintain the quality of product throughout the journey. However, the transportation and operation of reefers requires a constant supply of energy throughout the supply chain. This results in a significant energy consumption by reefers. When large numbers of reefers are involved, this results in high amount of energy consumption at terminals as well. From a terminal perspective, the monthly throughput of reefers shows a lot of variation due to the seasonality of food products. As a result, the growth of reefer trade, the seasonality of food trade and the special requirements of reefers has led to an increase in the peak power demand at terminals. Because utility companies apply extra charges for the highest observed peak demand, it is beneficial for terminals to keep this demand as low as possible to reduce energy costs. To investigate the opportunities for container terminals to reduce their peak demand, an energy consumption simulation model is developed. With the model two energy reduction strategies are tested to analyze their impact on peak demand: intermitted distribution of power among reefer racks and restriction of peak power consumption among operating reefers. Both strategies show significant opportunities for cost reductions.

    Author(s) - affiliated with Rotterdam University of Applied Sciences

    For this publication